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Abstract—Thin-walled closed tubes of 70-30 brass were homogeneously deformed to finite levels
of strain by internal fluid pressure combined with external longitudinal load in arbitrary fixed ratios.
Plastic orthotropy was present initially and remained coaxial with the principal stresses throughout
every experiment. On the other hand, the successive contours of equal work in biaxial stress space
changed their shapes progressively. The geometry of the entire family is represented here by a simple
formula involving only work-dependent parameters. The modelling is complemented by an empirical
stress-strain relation for each experiment; the parameters in this case are dependent only on the
imposed load ratio.

In the present constitutive analysis a primary role is assigned to the contours of equal work
(and not to yield loci). That role is further enhanced by our observation that (with certain exceptions)
the successive contours act instantaneously as plastic potentials. This means that the components
of an infinitesimal increment of logarithmic strain are proportional to the components of the
associated normal to the current contour in stress space. In coming to this conclusion we found it
advantageous to call in aid the geometric principle of polar reciprocity ; as this rarely features in the
mechanics literature an exposition ab initio is included in the paper.

1. INTRODUCTION

An experimental study of the plastic instability and fracture of thin-walled tubes of 70-30
brass under internal pressure and axial load was reported by Stout and Hecker (1983).
Stresses and strains were continuously monitored as the pressure and load were increased
from zero in any chosen ratio maintained by servo-control. The primary range of homo-
geneous deformation was not of immediate interest, and in consequence the detailed
measurements during that regime do not appear in the published account. During 1991, in
the course of private correspondence, it became apparent that basic information of this
kind goes well with a new approach to modelling the plastic behaviour of textured sheet
(Hill, 1991 ; Hill and Hutchinson, 1992 ; Hill, 1993). The data not published by Stout and
Hecker is accordingly presented here in full (where relevant) together with subsequent tests
on tubes remaining from 1983. In parallel with these more recent experiments the consti-
tutive model has been refined in detail and also extended in particular directions.
Underlying our present standpoint is an explicit recognition that the internal state of
a representative element necessarily varies as deformation proceeds, and furthermore that
it does so in a way that is unique to each path. Even when different paths terminate at the
same objective stress, or in the same superficial configuration, the respective final states will
generally differ to a greater or lesser degree. Attempts to introduce some order into this
complicated scenario have mostly depended on a priori notions of “‘equivalence” (as judged
for example by an equal expenditure of work, or by an equal value of some functional of
strain history). Having regard to the diverse phenomena that accompany texture devel-
opment, it is unsurprising that these notions have proved to be of limited value in practice
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(largely as approximations within restricted classes of paths). In retrospect they may
actually be thought to have hindered progress overall by tending to strait-jacket constitutive
analysis. Equivalence does not feature in our considerations therefore.

We also depart from custom by focusing on the expenditure of work instead of on a
criterion of yield (except in the as-received state). Determining any subsequent vield cri-
terion by direct experimentation is not feasible in the present context. In principle it would
entail many paths of neutral loading; in practice the arbitrary choice of some discernible
threshold of inelastic strain would significantly affect the outcome. By contrast the plastic
work is calculable with both ease and certainty from the continuously recorded components
of stress and strain. It may hence be relied upon as an objective constituent of material
behaviour. Contours of equal work are of fundamental interest and will be constructed
from interpolations of readings taken along paths of proportional loading. In the space of
the axial and hoop components of Cauchy stress (or in the space of the components of
logarithmic strain) the contours appear as convex curves crossing the loading paths. With
increasing deformation the shape of successive contours progressively changes, due no
doubt to variations of texture in the material. Their geometry is deserving of investigation
for another reason also: there are grounds for supposing that the contours act successively
as instantaneous potentials for accompanying differential increments of strain. More
precisely, it may be conjectured that a normality flow-rule applies in relation to the work
contours in stress space, in the same way that it is classically presumed to apply in relation
to yield loci. This property, if it can be demonstrated, would have far-reaching conse-
quences ; the data are accordingly analysed with particular care and with due allowance for
material non-uniformity and other sources of possible error.

There is, finally, another element in our general approach to constitutive modelling. It
is not enough to present observations in tabular form or graphical form alone. Wherever
practicable we have devised empirical formulae that compactly embody smoothed data of
various kinds. Such formulae, if well chosen, can uncover trends and relationships that
may otherwise escape notice. For example, we have gone to considerable lengths to find a
simple law of work hardening that fits the stress—strain curves for all paths. Likewise a “user-
friendly” yield function recently proposed by Hill (1993} has been adapted to represent the
work contours at all levels of deformation. Qur conclusions from these and related exercises
will be described in detail.

2. THEORETICAL FRAMEWORK

The experimental data will be analysed from a standpoint which differs in several
respects from the conventional approach. A collateral framework of elementary theory is
accordingly presented at the outset. Rate dependence and thermal effects are not considered.

The as-received textures of the drawn tubes were sufficiently fine-grained for the
material to be regarded as macroscopically homogeneous. Furthermore, at this level of
observation, the plastic response of a representative material element has orthotropic
symmetry relative to centroidal axes aligned with the local directions of the generator,
circumference and radius (labelled 1, 2 and 3 in what follows). Under combined loading
by longitudinal tension and internal pressure these axes are also principal for the local
stress. The respective components averaged through the wall thickness are denoted by o,
and 6,, with ¢, treated as being negligibly small. In the course of finite plastic deformation
the crystal texture of a tube inevitably changes ; nevertheless, under the loading in question,
the orthotropic symmetry of a representative element is preserved and its principal axes
can be said to be embedded in the material at that level. In the tests the combination of
tension and pressure was servo-controlled so as to maintain ¢, and ¢, in a fixed ratio
throughout the regime of uniform strain. This coupling corresponds to a ray from the
origin in a Cartesian space where (g,, d,) are the coordinates (Fig. 1). Such stress paths are
best specified by polar coordinates (z, ) such that

(6,,6,) = t{cos 8, sinb). h

Tests at constant f can only span the quadrant 0 < 0 < é—n:, any compressive stress being
insupportable when a tube is thin-walled.
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Fig. 1. A typical ray in (o), g,) space, showing polar coordinates (z, 8). It represents combined axial
load and internal pressure such that the ratio o/, remains constant.

Expenditure of work will be a primary constituent of our analysis of the experimental
data. By a standard formula the work differential per unit current volume of material is

dw = ¢, de¢, +0,de,, (2)

where ¢, and &, are the longitudinal and circumferential components of logarithmic strain.
In the present context it is legitimate to ignore elastic deformation as well as permanent
changes in volume (if any). Effectively, then, dw calculated by (2) is the increment of plastic
work per unit volume in the as-received state. In relation to tests at fixed 0 it is appropriate
to introduce a scalar measure of strain, namely

y =¢,cosf+¢,sinb. 3)
Then eqn (2) can be transformed with the help of eqns (1) and (3) to
dw = tdy, 4
which shows that y is the work-conjugate to 7 along a radial path. It is noted also that
Ty = 0(&, + 0,8, (5)

directly from eqns (1) and (3).

Values of (¢, 0,) and (¢, ¢,), continuously recorded during each test at fixed 6, enable
w to be computed as a function of 7 by integrating eqn (2) or (4) along the particular ray.
In principle the results over a range of # can be assembled as a function of = and 6 jointly,
say

w = O(t, 0). (6)

In practice, of course, the dependence on 8 is known only from a limited number of tests,
but the function as a whole can be completed empirically by informed interpolation. The
same data can be assembled alternatively as

7= Y¥(w,0) (7)

say, by computing 7 as a function of w at each 6. This standpoint leads naturally to the
concept of a discrete set of work contours in stress space, corresponding to particular values
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Contours of
cz equal work

Fig. 2. Typical contours in (¢, 6,) space associated with distinct values of the work per unit volume.
Intercepts with radial stress paths (broken lines) are indicated by solid dots.

w=w,w’, ..., etc. (Fig. 2). Their equations in polar coordinates will be written in explicit
form as

T=f0;w), t=fO:w"),... ®)

where the semi-colon and re-positioning of the variables signify the subordinate role of w
as a parameter. In a similar manner the equations can be written in implicit form as

P, H=w", O(,H=w",...

by turning (6) around to accord with the shift of emphasis. Actual work contours and their
empirical formulae are best presented when the experimental data are reviewed.

Meanwhile some overall qualitative features can be noted in advance. First, in a test
at constant 6, it is to be expected with any strain hardening material that t will increase
with w as deformation continues. Successive contours will then expand monotonically, and
most probably will also change shape. The reason is that the strain path depends on # and
consequently so do the progressive changes in stzate of a representative element of material.
(“State” is a shorthand for the current totality of grain geometries and orientations within
an element, together with the slip systems and Schmid stresses of each grain.) Suppose, on
the other hand, that successive contours vary only in scale and not in shape, as may happen
while the total deformation is still comparatively small. Geometric similarity throughout
some domain of stress space entails that the generic radius 7 is a separable function of 6
and w there. Then eqns (7) and (8) reduce to

T =f(0)g(w) &)

where the shape is determined by f(6) and the scale by g(w), a monotonic increasing
function. As a consequence the work-conjugate strain can be evaluated by (4) as

* dw 1 dw
= ST I e — s 10
! j T f 90 o
and so the product
W w
7 =g(w) L 200) (n

is independent of §. It follows that 7y is constant along a work contour, and likewise so is
6.8, + 0,8, by eqn (5). This simple property proves useful later in several respects. Finally,
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Fig. 3. Schematic relationship between a typical work contour and a segment of the particular yield
locus (broken line) which is associated with the terminus of a loading path OA. Y denotes any point
on this yield locus.

we think it very necessary to distinguish clearly between a yield locus as ordinarily under-
stood and a work contour as defined here. Elasticity being neglected, a yield locus is a path
in stress space that involves neither deformation nor work. It is hence associated with just
one material state (in the sense explained above) and its geometry is determinable in
principle by a cycle of neutral loading. By contrast, a work contour is a singly-infinite set
of different material states generated by radial paths from the origin. Consequently a
distinct yield locus is associated with each of these states. One might conjecture that every
such locus touches the contour at the corresponding stress point and otherwise lies within.
Figure 3 shows a typical work contour (solid curve) and a segment of the yield locus
(broken curve) associated with the terminus A of a typical radial path OA (solid line). Let
Y be any stress point on this particular locus, and let w(Y) denote the expenditure of work
per unit volume if Y were to be reached directly by the radial path OY. On the other hand,
if it were to be reached by the path OA followed by the strain-free segment AY, the work
would be w(A). The two values are not the same simply because states of the material differ
when the loading paths do, even if they terminate at the same stress. In this case w(Y) is
necessarily less than w(A): the shortfall is, by hypothesis, the additional work that would
be expended if the path OY were to be continued radially up to the contour.

These few remarks are by way of adding some colour to the formal distinction. They
further indicate how its close observance might help to rationalize experimental data. We
consider, in fact, that the complex relationship between yield loci and work contours
deserves to be investigated in depth. Attention has recently been drawn to one important
aspect of that relationship in the closing remarks by Hill and Hutchinson (1992).

This has to do with the constitutive relation between a plastic strain-increment (de,, de,)
and a yield stress {g,, ¢,) in any given state of the material. 1t is generally held that the
strain-increment vector is co-directional with the local normal to the current yield locus.
Suppose that the state in question has been attained by a radial path. If the previous
conjecture is valid, the work contour through the path terminus (o, ¢,) is tangential to the
yield locus at that point (Fig. 3). This means that the strain-increment vector is also co-
directional with the local normal to the work contour. The status of the conjecture will
accordingly be assessed later by reference to the strain paths and work contours determined
by the tube tests. A suitable framework for this assessment is provided by the following
analysis.

The components of stress at any point on a contour are first expressed as non-
dimensional ratios

(01,02)/t = (vi,¥2) (12)

relative to the equibiaxial radius 7, (the value of r when 6 = 45°). Then, whatever the shape
and size of the contour, the equibiaxial radius of its image in the space of the new variables
(v1, v2) is always unity. We introduce also a generic outward normal to the image contour
and denote it by (y,, ). Its local direction is such that
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Fig. 4. Schematic correspondence of work contours in the (v, v,) and (y,, i1, spaces, demonstrating
the geometric duality embodied in the principle of polar reciprocity.

H10V; + 16y, =0 (13)
where (dv,, 6v,) is an infinitesimal arc at (v, v,). Its local magnitude is set by requiring that
WiVt v, =1 (14)

and is consequently non-uniform. Henceforward (u,, u;) and (v,, v,) are regarded as points
in a common space (or ambivalently as vectors tied to the origin). When a work contour is
strictly convex there is a one-one correspondence between each pair of points, and likewise
between curves described by the respective points. In particular, if the infinitesimal arcs
(0u1, 0,) and (dv,, v,) correspond, it follows from eqns (13) and (14) that

V0, +v,0u, = 0. (15

The interpretation is that (v,, v,) is co-directional with the normal at (g, u,), just as (u,,
i) is co-directional with the normal at (v,, v,). There is thus a complete geometric duality :
the radius to any point of either curve is perpendicular to the tangent at the corresponding
point of the other (Fig. 4). In geometric parlance, the two curves are reciprocal polars. The
role of this simple property in the constitutive relations of classical plasticity was first
remarked by Hill (1987).

The preceding conjecture amounts to

(e, dey) = (uy, 4a) dwfty (16}
where the scalar factor is confirmed by
oy de; +0,de; = (v +pav2) dw = dw,

having regard to eqns (12) and (14). In Fig. 4 the angle between the rays (u,, u,) and
(vy, v,) is denoted by ¥ and is always counted as positive. The anti-clockwise orientation
of (u;, u») is therefore 8+ or #—y according to whether it lies above or below (v, v,)
whose orientation is 8 [the same as (o, g,) in Fig. 1]. The two rays coincide when the stress
path intersects the work contour at right angles. For purposes of computation it is expedient
to replace (16) by

(de,,de,) = [cos (B + ), sin (B +y)] dw/rcosy )
with the help of (1) and (2), noting that
g, cos (0L yY)+o,sin(@+y) = tcosy.
In principle, given a continuous family of work contours, the cumulative strain along any
radial stress path can be computed by integrating (17) in conjunction with the y(w)

dependence given by the directions of successive normals where the radius in question
intersects the contours. The same procedure is applicable to a family of contours generated
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by a single infinity of non-intersecting curved paths (6 then being variable since given by
tan 6 = g,/a,). In the experiments reported here most paths in stress space change direction
only slightly ; the observed contours are hence expected to deviate little from those that
would be generated by exactly radial paths.

3. EMPIRICAL FRAMEWORK

The aspects of constitutive analysis described previously are mostly qualitative and
non-specific. We now focus more closely on the test material. The experimental data are
very extensive, so the core observations have been embedded in a simple framework of
empirical formulae. The advantages of this procedure will become apparent subsequently.
For the moment it suffices to observe that the formulae interpolate the instrumental readings
smoothly, and well within the perceived scatter.

It is recalled that in each experiment the biaxial loads are maintained in fixed
proportion. Contingent changes in the tube diameter and wall thickness cause the ratio of
the principal stresses (o), 0,) to vary, but in general the variation is small and can be
allowed for where necessary. In the following formulae ¢, /0, is treated as strictly constant,
and likewise the angle 6 specifying the path orientation in (a,, ¢,) space. Correspondingly
we quantify the stress and strain magnitudes by the scalars ¢ and y introduced by eqns (1)
and (3). In any one test it will be shown that the dependence of t on y is reproduced very
closely by

/&= (L+y/m)" (18)

where £, 7 and m are determinate functions of 8 only. Anticipating the details, it may be
helpful to mention here in round figures that m(8) ranges between 0.55 and 0.75, and 7(0)
between 0.025 and 0.050. The formula includes the as-received state itself where the initial
yield locus is modelled by t = £(0) in polar coordinates. On occasion, eqn (18) will be
written alternatively as

T=k(y+n)", (19)

the parameter £ having been replaced by xx™. From this version, incidentally, it is seen that
if £ and 5 are made vanishingly small, but with &/n™ held fixed, the relation t = xy™ is
approached. This standard power law (so called) is plainly unsuitable at very small y for
any material whose initial yielding is well defined. Even beyond this threshold, the t(y) data
for our particular material can be fitted by 7 = k)™ in piecewise fashion only (with splines
and three or more different values of m). This is too cumbersome for our purpose.

Coming next to the work done on a radial path, the total expenditure per unit volume
up to a general state (7, y) is obtained by integrating (4) in conjunction with w = 0 at y = 0.
For 7(y) in eqn (18) this gives

wiw = (1+y/n)'*"—1 = (z/&)t+mim—1 (20)

where
w = ¢n/(1+m). 21
The new quantity w is the area between y = —#n and 0 under the 7(y) curve, imagining this

to be extended backwards to the point at which T would formally vanish. Equivalently,
supposing the origin for y transferred to this point, and considering a fictitious material
such that 7/ = (y/n)™, the quantity w is the work per unit volume that would be expended
in deforming this material from y = 0 to n. (Remember that y at fixed 8 transforms like a
logarithmic strain under change of origin.) When made specific by the actual dependences
of £, m and w on 6, formula (20) is the empirical realization of the qualitative equation (6),
while
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/¢ = (1+w/e)y™ ™ (22)

is the corresponding realization of eqn (7). By assigning discrete values to w, as in eqn (8),
we can generate from eqn (22) particular members of the family of work contours in terms
of the polar coordinates (t, §). Within the overall accuracy of the empirical framework
provided by eqn (18), any contour generated in this manner will smoothly interpolate the
set of points (t, 8) read from the test data at the assigned value of w.

The phenomenon of differential work hardening is of particular interest in the present
investigation. The terminology is due to Hill and Hutchinson (1992) and signifies that
successive work contours differ in shape as well as in scale. Supposing this to be the case,
consider a neighbouring pair of contours corresponding to the values of w and w+dw.
Their local radii with a common orientation 8 are respectively z and t + dt, and by hypothesis
their ratio is dependent on 6, whence so is é1/7. The instantaneous rate of work hardening
on a radial path is dt/dw (the limit of dt/dw) and hence its ratio to 7 is likewise dependent
on 6. On the other hand, dt/tr dw at given wis independent of ff when neighbouring contours
are geometrically similar. It follows that dt/r dw is a function of w alone when every contour
is geometrically similar to the initial yield locus (w = 0). This idealized configuration is
worth examining in more detail as a necessary preamble to treating differential hardening
in general.

On a radial path the rate of stzrain hardening (dz/dy on scale v) is related to the rate of
work hardening (dt/dw) by

dt/dy = tdr/dw = 1 (dr/tdw) (23)

since dw/dy = 7. When the contours are self-similar the bracketed ratio is independent of
8. Evaluating it in terms of the equibiaxial data, 7,(w), we obtain

dr\/, [dt
(a,)/ v (aﬂ/ " 9

showing that dz/dy varies as t* over any contour in a self-similar family. When (18) applies

in particular, we have
dr\/, m w
— =—/{14+— 25
@)= 50+3) &

on each radius. When the contours are also self-similar, the right side becomes a function
of w alone as noted in connection with (23). In fact the quantities m, w and £n are necessarily
constants, as is evident from eqns (21) and (22) if 7/¢ is to be a function of w only.
Furthermore, corresponding to (9), we can identify

F@) =8(0), gw) = (1+wowy” ™,
and verify that
w/&n = (1 +wjw) — (1 +w/w)™ .
This formula for the product Ty does not depend on 6, in illustration of the general theorem
stated after eqn (11). Finally, from eqn (18), it is seen that the rate of strain hardening in
the as-received state is

(dr/dy),—0 = m&/n (26)

on each radial path. This becomes
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(dt/dy), -0 = m&* /(1 +m)w @7

when the contours are self-similar, m and w then being constants as mentioned.

An explicit equation is now proposed for the initial yield locus, hitherto written non-
committally as T = £(6) in polar coordinates. A new function was constructed specifically
for the purpose (Hill, 1993), as no criterion extant in 1992 could accommodate the type of
anisotropy found in the as-received material. In terms of the geometry of the locus in stress
space, the most distinctive feature is that the radii at § = 0° and 90° are equal in length,
whereas the angles included by these radii and the local tangents are utterly different. In
polar coordinates the new function is expressible as

T
'L'2

2 2
=14 {2(% - 1)+(p+q)— %(pcos@ﬂsin())}sin@cose (28)
b

in the quadrant 0° < 6 < 90°. Here 1, denotes the equibiaxial radius at 45° as before, while
7, denotes the common uniaxial radius at 0° and 90°. The values of the dimensionless
parameters p and g are jointly governed by the orientations of the tangents at 0° and 90°.
It is seen from eqn (1) that, when expressed in the components (¢,, ¢,), the function is a
simple polynomial which differs from the much used quadratic by terms in ¢3¢, and ¢,03.
These are absent when p and ¢ are both zero, as would be the case were the anisotropy to
be purely normal (in the terminology used for sheet). When 7, = \/2'ru as well, the function
reduces to

72/12 = 1 —sinfcos f (29)

which is the ordinary von Mises criterion.

Referring to Fig. 4, it is recalled that the acute angle between a typical radius and the
associated tangent is treated as positive and denoted by %n——w‘ In conjunction with a
considered relation t(#), the angle i is readily calculated on any radius from

7(0) tany = |7°(0)]. (30)

For the moment we are concerned only with Y, and ¥4, associated with the uniaxial radii.
In conjunction with eqn (28) these are such that

tany, = (1—12/58) +pt// 27— (p+4),

tanyg, = (1—12/12) +4qt,/\/ 27— 2(p+q). 31

When . ¥4, and 7,/7, are known from experiment, these equations can be solved explicitly
for pand q:
(1 —t/y/28)p = (I —tan o)+ (tan Yo — tan Poo)to/y/ 27, — 13/72,
(1-1/y/20) g = (1 —tanysg) + (tan oo — tan o)/ /27, — 72/ 78. (32)

Now let ry and ry, denote the ratios of transverse to through-thickness strain-rates at yield
under uniaxial tension at 0° and 90° respectively. Then

(1 —tanyo)(1+75) = 1 = (1 —tanyge) (1 +rep) (33)

if the normality flow-rule applies at the instant of yield. In that event ¥, and ,, can be
eliminated from eqn (32) in favour of the observed values of r, and r,, (Hill, 1993).

In the present tests, however, the initial curvatures of the strain paths under uniaxial
tension are such that r, and ry, are ill-defined at yield. We prefer, therefore, to derive values
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Fig. 5. Segment of a work contour in the positive quadrant of (v, v,) space showing radii and
contour normals at the points E and N defined in the text.

of p and ¢q directly from the best fit of eqn (28) to the entire set of observed yield stresses ©
at all orientations 0 selected in the tests. Such fits also deliver values of ¥/, and ¥, via eqn
(31). The status of the corresponding r, and r,, given by eqn (33) can then be assessed in
the context of the post-yield range of strain-rate ratios at successive points along the strain
paths. This line of approach can be adopted also in regard to subsequent work contours,
more especially to investigate the possibility of an associated fiow-rule as conjectured
earlier.

When expressed in the dimensionless variables (v,, v,) defined by (12), the new function
chosen to model work contours becomes

VA v+ (p+g—1-26v— /2 (pv, +qva)v v, = 1—c
where
¢ =3(1-213/}). (34)

In the present context ¢” is less than 10~° and ¢ can hence be treated as an infinitesimal.
For example, eqn (31) is adequately approximated by

2tany, = (14+20)—(g+cp), 2tanyy, = (1+2c)—(p+cq), (39)
and eqn (32) by
%(p+q) = (1+c)— (1 —c)(tanyy+tan ), %(p—q) = (14+¢)(tanyo —tanyy,). (36)
When ¢ = 0 these reduce to
p=1-=2tany,, ¢g=1-—2tany,, 37

which are exact. Then p is determined solely by ¥4, and g solely by y,.

The relevant arc of a typical contour in (v, v,) space is shown schematically in Fig. 5.
The length of its equibiaxial radius OE is always unity by virtue of the varying scale factor
in eqn (12) ; correspondingly E has coordinates (1, 1)/,/2. On the other hand the common
length of the uniaxial radii OU, and OU, is 1,/1y, or (1 ——c)/ﬁ to first order in ¢, and this
may vary slightly with deformation. On every contour there is a point N where the local
radius and normal are co-directional and y vanishes. N lies to the right or left of E according
to whether p > g or p < ¢, respectively ; it coincides with E when p = ¢, and then the entire
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arc is symmetric about OE. The directions of the outward normals at E, N, U, and U, are
arrowed in Fig. 5. The signed gradient of any normal can be calculated as the ratio of
do/dv, to do/dv,, where afv,, v,) is the function (34). At E in particular these derivatives
are

(Bjdvy, 800v;) = (1=2c—p, 1 —2c—g)/\/2,
whence ¥/, is given by

1-2c—g

(3%)

without approximation (the upper sign applies when p > ¢ and the lower sign when p < ¢).
The derivatives at N are subject to

v, Oa/0v, = v, JatfOv,

since any radius has a gradient v,/v,. This amounts to

(P+q—1-20)(0F —v3) = /2[(pv] —gvd) +2(gv, —pvy)v,v3),

which must be solved in conjunction with eqn (34) to determine the coordinates of N.
When ON is within 5° or so of OE, the solution can be obtained conveniently by an iteration
starting from v, = v, = 1/\/5.

The scaled vector normal at any point is defined by eqn (13) with (14). In terms of the
function afv,, v,) its components are

(”la.u2 - avl s 6v2 Vi avl 26\’2

where

/v, = 2v, + (p+q—1—26)v,—/2(2pv, + V)02,
BafOvy = 29, + (p+q— 1 =26, —/2(pv; +2qv2)vs,
v, Qafdv, + v, Oafdv, = (1 ~2c)—\/§(pv, +gvy)vivs. 39

Scaled normals are treated here as free vectors and translated to become radii through O.
For clarity, however, these will be drawn in a separate (u,, 4,) space regarded as overlaying
the (v, v,) space. In Fig. 6 the arc described by their termini is shown as UFU%, where U¥
and U# correspond to U, and U,, respectively. Namely, OU¥ and OU¥ are the scaled
normals translated from U, and U,, and are hence radii inclined at , and ¥, to the
coordinate axes. The equation of this arc is obtainable by eliminating v, and v, between
eqns (34) and (39). For example the von Mises expression (29), in which p, ¢4 and ¢ are all
zero, gives rise to the dual functions

Vi—viu, v =30, 2 0,v 2 0), pltpp il =301 2 =21 = ~2u).

In general, however, the eliminant has no simple algebraic form and must be computed
numerically. When moderate accuracy suffices, a graphical construction is available via the
principle of polar reciprocity explained earlier (cf. Fig. 4). By this means U¥U¥ can be
generated from U, U, in either of two ways: (i) as the locus of the poles of tangents or (ii)
as the envelope of the polars of points. To explain this, let U be a typical point on U,U,. In
method (i), according to eqn (13), the corresponding point U* in {(u,, u,) space is located
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Fig. 6. The work contour in (g, ,) space corresponding to that in Fig. 5. Points U%¥ U% and E*
correspond to U, U, and E in Fig. 5 (E is reproduced in Fig. 6. for easy reference).

on the radius from O that is perpendicular to the tangent (dv,, dv,) at U; according to eqn
(14) the distance OU* is equal to the reciprocal of the length of this perpendicular. In
method (ii) a line in (u;, p,) space is drawn perpendicular to OU at a distance from O
which, according to eqn (14) , is equal to the reciprocal of OU ; this line, according to eqn
(15), contains the tangent (du,, ou,) to the required arc (its unknown point of contact U*
will emerge from the envelope of all such tangents).

In Fig. 6 E* is the point that corresponds to E, so it lies on the diagonal p, +pu, =
\/5 by eqn (14) with v, = v, = 1/\/5; moreover by eqn (15) this diagonal is tangential at
E*. Furthermore OE* is inclined to OE at the angle i, given by eqn (38) and indicated in
Fig. 5. The arrowed normals at U¥ and U¥ are respectively parallel to the rays OU, and
OU,. The projections of OU¥ and OU?* on the axes are both equal to 1,/1,, or \/2 (140
to first order in ¢, since their respective products with OU, and OU, must be unity in line
with eqn (14). The projections are accordingly shown as extending outside the square with
centre E and sides of length \/5 (OE being of unit length).

In conjunction with eqn (16) any strain path can now be computed incrementally in
terms of successive arcs in (u,, 4,) space constructed from a sufficient number of arcs in
(v,, v,) space (when these vary significantly in shape). This method is alternative to that
outlined in connection with eqn (17). It is reiterated that both methods assume a normality
flow-rule in association with the work contours.

4. MATERIAL PREPARATION AND TESTING PROCEDURES

The test material was precision-drawn 70-30 brass tubing which was specially procured
as not containing lead (unlike many free machining brasses). The tubing was annealed by
the manufacturer at 550°C for 15 min followed by an air cool ; the nominal grain size after
recrystallization was 20 um. The as-received texture was verified to have orthotropic
symmetry relative to the principal geometric axes in the tube wall. The maximum intensity
of poles was 2X random. Overall the texture resembled what is classically seen in brass
sheet after rolling.
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The tubing was cut to lengths of 254 mm, leaving a gauge length of 170 mm free to
deform ; its external diameter was 11.66+ 0.013 mm while its wall thickness varied between
0.459 and 0.491 mm. In order to reduce experimental scatter, only those tubes with the
smallest individual variations in wall thickness were accepted for testing. Additionally, a
detailed survey of the section geometry of each tube was considered to be indispensable for
the subsequent evaluation of the test data. The diameter was therefore checked in four
directions at a representative section by both optical and mechanical micrometers. The wall
thickness at the ends of each diameter (eight readings in all) was also measured by an
ultrasonic transducer. This instrument was previously calibrated on both tubing and sheet
of precisely known dimensions.

The tubes were subject to axial load and internal fluid pressure in a servo-hydraulic
testing machine (Stout er al., 1983). This was equipped with computer control and data
acquisition. Potential bending moments in the straight-ended tubes were eliminated by
grips consisting of a conical seat between three split cones, each clamped by a variable
pressure ; any incipient bending was monitored by three strain gauges mounted axially at
120° intervals. The special grips enabled the tubes to be deformed homogeneously over
substantial ranges of strain. This would probably have been impracticable with conventional
grips and contoured specimens (whose individual machining would incidentally have been
very expensive).

In each experiment an arbitrary fixed ratio was maintained between the external axial
load (tensile or compressive) and the internal fluid pressure (the tube ends being closed).
Furthermore the rate of loading was maintained as constant by using the outputs of the
tension and pressure transducers as feedback control signals. The attainable homogeneous
strains were well in excess of the ability of adhesives to bond strain gauges. Therefore,
after mounting the tubes in the testing machine, they were instrumented with mechanical
extensometers. The axial extensometer had an initial gauge length of 25.4 mm and was
mounted at the mid-section of the tube gauge length. The hoop strain was measured by a
two-point diametral extensometer, modified so that it could be positioned centrally between
the arms of the axial extensometer. In this way it was hoped to minimize errors that could
arise if different volumes of material were sampled by the respective extensometers. Finally,
in order to maintain a state of pure hoop tension, one end of the tube was allowed to float
freely over its O-ring seal. A steel collar was slip-fit around the tube in the region of this
ring, so as to prevent expansion of the tube and an accompanying loss of pressure. The
tube gauge section was reduced to 120 mm in order to facilitate alignment ; this length was
still sufficient to exclude any geometric constraint on the deformation. In every other state
of loading the ends of each tube were gripped rigidly.

Outputs from the axial tension, internal pressure and displacement transducers were
monitored continuously by x—y recorders and by A/D data acquisition. The rate of digital
acquisition was increased immediately before initial yield in order to maximize the number
of data points that could be taken. The data were analysed by the same computer that
controlled the experiment, and archived on disk for future use.

The experimental data reported here include some acquired by Stout and Hecker
(1983) which was not published subsequently. Other tests done at that time have been
omitted because of scatter that now appears excessive. Subsequent refinements of procedure
and techniques (especially the new locations of extensometers and the determination of
wall thickness by an ultrasonic transducer) have made it possible to tighten the limits of
acceptability. We are satisfied that both sets of data presented here are mutually consistent
in all respects.

5. EXPERIMENTAL RESULTS

The primary observations in the two series of tests on brass tubes are brought together
in Figs 7 and 8: these show a collage of paths in the respective spaces of the components
(61, 02) and (¢, &;). The paths are a diverse sampling of all those that could in principle be
generated by internal fluid pressure P and external axial load L applied in fixed proportion.
This combination was successfully maintained by servo-control throughout each experiment

SAS 31:21-1
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Fig. 7. Individual paths in principal stress space taken from experiments on brass tubes in 1982 and
1993.

until near its conclusion, when L/P tended to fall away with the approach of diffuse
instability. It should be noted that certain key experiments were performed in duplicate ;
they may be recognized in the figures by paths that lie very close to one another or actually
overlap (as under simple tension). Near the origin our digital graphics technique was
insufficiently refined to distinguish all the covergent paths with clarity, so in that neigh-
bourhood we show only those under uniaxial tension.

At this point we interpose some qualitative remarks on the variation of the stress ratio
with continued deformation. Except in the type of test specifically designed to produce pure
hoop tension, the open ends of each tube were clamped firmly around tightly fitting
mandrels. With grips of this kind the principal stresses averaged through the wall are such
that

(1+¢2a)o, = (L+na*P)2rat, o, = aPft (40)

where a and ¢ denote the current inner radius and wall thickness, both uniform over the
central gauge length. Elsewhere they vary along the tube, being held to their initial values
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Fig. 8. Experimental strain paths (logarithmic measure) corresponding to the stress paths in Fig. 7.
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a, and ¢, over each mandrel. A loading path in which L and P increase monotonically in
strict proportion will be specified by a constant value of the dimensionless parameter
A = L/naj P. The stress ratio at any stage is then expressible from eqn (40) as

0,/6, = 3(1+4a}/a’)/(1+1/2a) when P 0. 41

Trivially, when P = 0 and 4 — oo, the test is one of simple tension (¢, = 0) and the path is
an exact ray (6 constant in Fig. 1).

In general, however, since the gauge values of a and ¢ change progressively during a
test, the consequent path in stress space is curved. Exceptionally, when 4 is very small (zero
A would signify a closed tube free from external load), the formula indicates that the
curvature also should be very small, being then primarily dependent only on changes in the
first-order quantity ¢/2a. An effectively linear path on which ¢ /6, = 0.51 was in fact
achieved by controlling 4 at 4.44 x 10~*. Another nearly linear path, namely such that
0,/0, ~ 3.27, was achieved by controlling 4 at 5.824 ; in that case, however, the explanation
has to do with the local geometries of successive strain-increment potentials (see later). The
particular side to which any other path bends in Fig. 7 can be understood in terms of the
sign of A coupled with the observed trend in a3/a’. According to eqn (41) a path should be
concave downward when —1 < 4 < 0, concave upward when 0 < 4 < 5.824, and concave
downward when A > 5.824. Note, however, that A = —1 in eqn (41) would make ¢, zero
only at the start. Therefore, as described in Section 4, pure hoop tension could be maintained
only by supporting the tube at one end in a manner quite different from what is assumed
in eqn (41). Finally, with regard to the serrations on most paths in Figs 7 and 8, such
“noise” in the recordings is mainly attributable to a post-yield stress plateau and to dynamic
strain ageing. There was, in addition, a slight voltage ripple in the signal conditioners (10
mV peak-to-peak 60 Hz).

Turning to the strain paths in Fig. §, these also are slighly curved and the sense is
likewise a function of the loading direction specified by A. Effects of dynamic strain ageing
are clearly seen along some paths, especially those under longitudinal tension and in the
neighbourhood of balanced biaxial stress. In the earlier series of tests in 1982 the diametral
extensometer was not mounted between the arms of the axial extensometer, and this tended
to accentuate the serrations. Tube rupture generally terminated the tests and often produced
artefacts in the transducer recordings. The plots have accordingly been curtailed just before
rupture.

We come now to the observed relation between the scalar measures 7 and y on any
path, as defined in eqns (1) and (3). The latter expression for the work conjugate of t is not
quite accurate when 8 varies and the path is slightly curved, but in the present context the
error is negligible. An exact formula replacing eqn (4) would be

dW = Td'y+(0'281 _0182)d6 (42)

which comes from eqns (1), (2) and the total differential of (3) ; henceforward the term in
df will be ignored. A typical (z, y) relation is shown in Fig. 9; it is for the path ¢, /0, ~ 1.23
from yield up to the stage when w = 60 MPa, as determined by the cumulative integral of
eqn (2). To avoid saturating the plot with symbols we have not included all the data
acquired. The full curve in Fig. 9 is given by (19) with k = 1637.6,n7 = 0.031 and m = 0.657.
To establish these magnitudes we first selected a closely spaced set of # values spanning its
expected order of magnitude. All the data points were assembled in log () vs log (y+4#)
plots for each # in turn, and then lines were fitted to every plot by the method of least
squares. The optimum trio of x, # and m was identified via the particular line whose
correlation coefficient was nearest to unity. It can be seen that the empirical law (19), or
equivalently (18), represents the observations very accurately from initial yield right through
to y = 0.160 (when ¢, = 0.1589 and &, = 0.0586). At larger deformations brass exhibits the
phenomenon of saturation hardening and so the empirical law begins to diverge. Near
yield, by contrast, the fit is particularly good and in fact we found it better even than
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Fig. 9. A typical fit of measured values of (z, y) by the hardening law (19). The particular example
is for combined loading such that ¢,/0, = 1.23 initially.
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a polynomial of second degree. For all stress paths without exception the agreement
demonstrated by Fig. 9 is entirely typical.

The empirical parameters are given in Fig. 10 for all paths. The short arrowed segments
indicate the sense and magnitude of the progressive changes in # on curved paths. Each
linear or near-linear path, on the other hand, is identified by a solid circle at the centre of
a small cross. Broadly speaking, it appears that m(f) is a wave-form of type a+5b cos 86
ranging between 0.55 and 0.73. The values of #(8), however, are much more random, due
probably to material variation coupled with a weak dependence of the correlation coefficient
on 77; they nevertheless suggest an oscillation of similar phase and period, albeit a highly
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Fig. 10. Empirical parameters m, #, k and £ as a function of 8 for all experiments.
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Fig. 11. Experimental stress values at even expenditures of work per unit volume (values indicated
by the arrows).

variable amplitude. The function x()), by contrast, is well defined and distinctly wave-like
with a period twice as long; it ranges between 1000 and 1640 MPa.

As remarked previously in connection with eqn (6), the work function in each test can
be computed from the (7, y) data acquired. Then, adopting the converse standpoint in eqn
(7), the values of 7 in all tests can be read off after the same expenditures of work per unit
volume ; these are taken to be w = 10, 20, 30, 40, 50 and 60 MPa (see Fig. 11 : each point
is represented by the centre of a small circle). Exceptionally, radii to the points labelled
w = 0 have been calculated separately as ¢ = kn™ (Fig. 10} ; an entire locus t = £(6) would
hence correspond formally to zero y(f) in eqn (18) or (19). On that account it will be called
the initial yield locus, a terminology which in this one instance is synonymous with work
contour in our general usage. It should be added that we did not find it practicable to
nominate yield points objectively in any other way. The initial locus here is approximately
an ellipse with its major axis oriented at 8 x~ 40°. It is apparent that the shapes of successive
work contours in Fig. 11 change progressively ; this exemplifies a phenomenon which we
have earlier termed differential work hardening. In the present case the sides flatten more and
more, while the rounded end tends to sharpen. With regard to the stress paths themselves, it
should be mentioned that three tests in the neighbourhood of 6 = 45° were duplicated
(namely those in which L/P was set so as to produce iritial ratios ¢,/6, equal to 1.00, 1.17
and 1.33 respectively). At a given level of w, therefore, the deviation seen in Fig. 11 between
the data points of any such pair indicates the degree of experimental scatter. We believe
that this is largely attributable to material non-uniformities, coupled with circumferential
variations of wall thickness in the as-received tubes.

As envisaged in eqn (8), each work contour in its entirety will be represented empirically
by an analytic expression. We found that the data points for each value of w in Fig. 11 can
be fitted closely by the function (28) with suitable parameters p and ¢ . It is necessary to
decide first on appropriate values for 7, and 7, at each w. The responses to uniaxial tension
at 0° or 90° were found not to differ significantly. Accordingly the four values of 7, obtained
at each w in duplicate tests at 0° and 90° have been averaged to produce the second column
of Table 1. The choice of 1, is less clear cut because most paths curve and none is truly
equibiaxial. When w = 60 MPa, however, both points from one particular test and its
duplicate happen to fall on the 45° diagonal; it is their average that hence appears under
7y in the last row of Table 1. For the initial yield locus, on the other hand, the entry under
7y is £(45°) derived by fitting eqn (18) to a test in which L/P was set to produce ¢, = o,
initially. The duplicate test with this L/P has been disregarded for the purpose in hand: as
can be seen in Fig. 11, it gives a value of £(45°) that lies well outside any plausible locus
through the set of points labelled w = 0. Corresponding to the values thereby assigned to
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Table 1. Parameters input into Hill’s (1993) cubic function to mode! the evolving work

contours
W Ty Ty Fo r9() p q ¢
yield, 0 117.68 169.98 0.98 0.39 0.479 0.042 0.02]
10 210.52 300.50 0.79 0.33 0.522 0.135 0.010
20 262.16  370.75 0.63 0.28 0.562 0.229 0.000
30 306.68  430.28 0.50 0.24 0.600 0322 —0.008
40 343.60  479.26 0.40 0.21 0.636 0409 —0.014
50 37455 51991 0.33 0.18 0.671 0.481 —0.019
60 402.23  556.11 0.28 0.15 0.705 0.532 —0.023

7, and 1, at w = 0 and 60 MPa, the quantity ¢ defined by eqn (34) has been entered in the
first and last rows of Table 1. Values for ¢ in the intermediate rows have been interpolated
by holding its second differences constant ; nothing more complicated is called for since the
eventual fit by eqn (28) would not be affected perceptibly. Associated entries of 1, have
finally been computed from eqn (34) and the values of 7, already determined.

Coming at last to the choice of p and g, it is recalled that these parameters are directly
linked with the terminal tangents via the angles ¢, and Yo, defined in Fig. 5. The exact
relations are recorded in eqns (31) and (32), along with their simpler replacements (35) and
(36) when ¢* « 1. First approximations to i/, and i/,, can be obtained from short segments
drawn by eye through three or four data points near 6 = 0° and 90°, respectively. The
corresponding values of p and ¢ are then inserted in eqn (28), from which a provisional
contour can be generated by computer graphics. A few iterations of p and ¢ suffice to
improve this contour so as to produce an acceptable fit to all the data points. The Cartesian
version of its equation in (34) is especially convenient because terms in vi and v3 are absent ;
this means that only a quadratic in either variable has to be solved when the other is given,
so locating the curve by chordal traverses parallel to an axis of coordinates. The continuous
contours in Fig. 12 were derived in this manner and their associated values of p and ¢
appear in Table 1. It should be noted that the quality of any fit is not noticeably affected
by small variations in p and ¢ (of order 0.002 say) ; therefore, given the degree of scatter, it
is pointless to strive for a precise optimum according to some extraneous criterion. By the
same token all the (p, ¢) pairs can be collectively adjusted to provide a smooth base for
any subsequent computations. All of this having been attended to, we list values of r, and
reo derived by eqn (33) from the finally accepted ¥, and o, at each w . At this stage,
however, such values should nor be regarded as ratios of transverse strain-rates under

WORK CONTOURS GIVEN BY (28) AND THE

500 PARAMETERS IN TABLE 1. CORRESPONDING POINTS
ON THE ACTUAL STRESS PATHS ARE MARKED 'O’
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Fig. 12. Theoretical work contours derived from eqn (28) and the values of the parameters listed in
Table 1. The experimental points O are those in Fig. 11.
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Fig. 13. Curves representing m(6) and n(f), derived from piecewise cubic splines, fitted to the
experimental points in Fig. 10.

uniaxial tension. The general question whether a normality flow-rule holds in relation to
the work contours is left until Section 6.

The data points in Fig. 11 can alternatively be interpolated by work contours without
the benefit of an expression such as (28) or (34). A practicable method in the context of
differential work hardening was formulated by Hill and Hutchinson (1992), and is appli-
cable whenever the t(w) dependences in a set of radial tests can be represented by empirical
formulae, both separately and collectively. Several examples were given in the reference in
connection with standard power laws and were accompanied by detailed computations.
The law (22) was mentioned also in passing, and it is this with which we are now concerned.
Suitable functions must be found in this case to interpolate values of the parameters &, n
and m known only for discrete directions 6 (Fig. 10). The entire contour 7(8) associated
with an assigned value of w can then be calculated directly from eqn (22), in which w(6) is
defined by eqn (21). In order to smooth the computation it was found convenient to take
£(0) as the radius of the analytic locus already nominated as w = 0 in Table 1 and Fig. 12.
Trial functions m(6) and n(0), on the other hand, were constructed piecewise by means of
cubic splines (Fig. 13). It was noticed that the local geometries of evolving contours
generated by eqn (22) can be sensitive to small changes of these functions; in particular,
slight concavities may develop as w increases, as reported by Hill and Hutchinson (1992)
in another context also. To avoid unwanted artefacts of this kind it was necessary to refine
m(B) and () a posteriori. Having at length generated an acceptable set of contours (Fig.
14), we wished to compare them with those in Fig. 12. To facilitate this comparison, selected
points on the analytic contours in Fig. 12 were transferred to Fig. 14 and are depicted by
stars. Specifically, these points are where the actual experimental paths intersect the analytic
contours in Fig. 12. It can be seen that the agreement is excellent. This was not necessarily
to be expected, so it is reassuring to find such mutual consistency between the performances
of totally independent formulae such as eqns (22) and (28).

The validity of the flow-rule (16) remains to be considered, so work contours in
(41, 4a)ty, sSpace (Fig. 15) are derived from those in (v,, v,)7, space (Fig. 12). For simplicity
their mutual relationship will be described as if both spaces are overlaid, along with the
respective axes of coordinates. The tied vectors (y,, u,) and (v,, v,) then correspond to one
another in accordance with the geometric principle of polar reciprocity as epitomized in
Fig. 4; the same duality is specified analytically by relations (13)—(15). For greater accuracy,
in preference to a construction by pure geometry, the components (u,, u,) have been
computed directly from (v,, v,) via eqns (39). The resulting contours in Fig. 15 all have the
same qualitative features indicated in Fig. 6 ; now, however, the radius equivalent to OE in
each case has a variable length 7,. This increases monotonically with w, so the contours
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WORK CONTOURS GIVEN BY (22) AND THE
500 FUNCTIONS & (8), 7 (8), AND m (8) SPECIFIED

IN SECTION 5. THE STARS ARE WHERE THE ACTUAL
STRESS PATHS MEET THE CONTOURS IN FIGURE 12.
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Fig. 14. Theoretical work contours constructed from eqn (22) and the spline fits for the functions
£(8), n(8) and m(8) specified in Section 5. The stars are where the actual stress paths meet the
contours derived otherwise in Fig. 12.

expand progressively ; moreover their intersections with the diagonal are spaced much like
their counterparts in Fig. 12 (but not exactly so). The termini correspond to states of
uniaxial tension in Fig. 12. Therefore, every normal at a terminus is parallel to the nearer
axis of coordinates, while their associated tangents are perpendicular to that axis, as in Fig.
6. Furthermore every ray from the origin to a terminus in Fig. 15 is directed at i, or ¥4
to the nearer axis, as in Figs 5§ and 6, both angles being dependent on w (Table 1); the
termini would only lie on rays through the origin if both , and 4, were constants. In the
present context, incidentally, it is worth remarking that the most convenient formula for
the angle y at other points is

tany = |u v, —pavyl. (43)

This is equivalent to eqn (30), of course, and it follows directly from
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Fig. 15. The work contours in Fig. 12 re-plotted in terms of 4,7, and u,1, by means of the relations
(39).
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WORK CONTOURS GIVEN BY (28),(39) AND
THE PARAMETERS iN TABLE 1. THE STARS ARE

1000 WHERE THE ACTUAL STRESS PATHS MEET
THE CONTOURS IN FIGURE 12.
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Fig. 16. Work contours identical to those in Fig. 15 are reproduced. The stars correspond to
intersections of the actual stress paths with the independently derived contours in Fig. 12.

Y =10—¢|, tanl =v,/v,, tan¢ = u,/u,

together with eqn (14).

In Fig. 16 the stars on the derived contours have the same significance as in Fig. 14:
they represent states of stress where the actual loading paths intersect the interpolated cubic
curves in Fig. 12. Thus, a local normal at a star in Fig. 16 is parallel to the radius (v, v,)t,
to the corresponding star in Fig. 14. Dually the local normal at the same star in Fig. 14 is
parallel to the corresponding radius (u,, u,)7, in Fig. 16. It is hence evident, for example,
that the pronounced divergence of certain starred paths in Fig. 16 is liked with the increasing
sharpness of the cubic curves near # = 45°. Likewise the bunching of other starred paths
there reflects the progressive flattening of the cubic curves along their sides.

Lastly we show in Fig. 17 some typical strain paths selected from the full set in Fig. §;
the scale has been magnified and consequently the range of strain is somewhat reduced. At
each stage on an “O” path a further infinitesimal increment of strain should have com-
ponents proportional to the current values of y, and y, if eqn (16) is valid. The direction

0.15

0.10 f (MPa)

0.05 f

-0.05

-0.10 — t
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Fig. 17. Sample experimental strain paths with attached vectors whose directions represent the local
tangents predicted by a normality flow-rule applied to work contours.
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of vector (u,, u,) {but not the magnitude) is marked in Fig. 17 by attaching to each circle
a short segment which is parallel to the corresponding radius in Fig. 16. In almost all
cases (including those not shown in the figure) the predicted vectors are tangential to the
experimental paths, within the local scatter limits. A complete strain path could, in principle,
be calculated by integrating eqn (16) re-arranged as

(dey, dey) = (uy, )10 (d“’/fé) (44)

in terms of radii read from Fig. 16. However, many more contours would be needed to
make the increments of work small enough for reasonably accurate integration. We did not
consider this computation to be justified when the observed paths themselves are affected
by cumulative effects of jerky deformation in 70-30 brass.

6. CONCLUDING REMARKS

A distinctive feature of the constitutive analysis here is the prominent role given to the
work of plastic deformation. At any stage on a considered path the total work w per unit
volume can be computed directly from transducer readings of loads and displacements; it
is hence an objective indicator of material response. On that account we have focused on
the expenditure of work, and on its contours in stress space, rather than on yield surfaces
whose determination generally involves some artificial ingredient (such as an arbitrary
threshold of offset strain). This distinction is important in the present context: we needed
an objective marker of the changing state of the material along each loading path in stress
space.

It was found that successive contours of equal work in stress space are not geometrically
similar but change shape progressively and noticeably. We have characterized this kind of
differential hardening quantitatively by two work-dependent parameters in a formula that
models the contour geometry. In terms of polar coordinates 7, § in stress space, the formula
essentially gives 7 as a function of 8 at any fixed w. A complementary description of the
differential hardening is obtained by regarding t as a function of w at any fixed . This
standpoint is more immediately related to our combined loading experiments, which were
servo-controlled with the aim of holding 6 approximately constant in each. The resuits of
any test were closely modelled by a simple power law which involves three parameters
dependent on 8 ; this takes account of the initial yieldpoint observed in the as-received 70—
30 brass. Finally we were able to confirm that these complementary descriptions are in
perfect agreement at the nodal intersections of the work contours with the quasi-radial
paths.

Having established the credentials of the analytic expression modelling the work
contours, we investigated whether they might also serve theoretically as instantaneous
potentials in the classical sense. Namely, each infinitesimal increment of strain along a
loading path should be associated with the local work contour by a normality flow-rule.
Specifically, the ratio of in-plane components of the incremental strain should equal the
ratio of corresponding components of the predicted contour normal at the current stress
point. Generally speaking, the hypothesis was found to be in close accord with observation :
the small deviations appear to be random products of the jerky deformation seen in this
material. On the other hand there are particular circumstances where the extent of the
deviation cannot be accounted for in that way. These are (i} at initial yieldpoints or (ii)
under uniaxial tension along the orthotropic axis where 8 = 0°. As regards (i) it appears
that the material may have to be deformed by a certain amount before transient effects
arising from the finite grain size disappear. As regards (ii) we were unable to offer any
explanation, seeing that a normality rule is verified for all other 8, from near 0° itself round
to 90°. Whatever the reason for the discrepancy, its occurrence is perhaps a warning that
overmuch reliance should not be placed on incremental strain ratios measured at two or
three directions only ; this has been standard practice for many years when reporting sheet
orthotropy. Moreover, the continuing curvature of most strain paths here shows that it is
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definitely unwise to rely only on a single ratio determined from the components of finite
strain at some arbitrary stage of the deformation.

During this investigation we have become convinced that the principle of polar reci-
procity has a useful part to play in analyses of sheet metal behaviour where the normality
rule is either under scrutiny or has already been validated. The principle barely features in
the solid mechanics literature, so a not inconsiderable portion of this paper has been
allocated to its presentation ab initio. For us, not the least of its advantages is as a visual
aid to a global overview of related families of stress and strain paths.

Acknowledgements—The contributions of MGS were supported by the Division of Materials Sciences, Office of
Basic Energy Sciences, US Department of Energy. MGS also wishes to acknowledge the work of Manuel L.
Lovato in performing the experiments discussed in this paper.

REFERENCES

Hill, R. (1987). Constitutive dual potentials in classical plasticity. J. Mech. Phys. Solids 35, 23-33.

Hill, R. (1991). A theoretical perspective on in-plane forming of sheet metal. J. Mech. Phys. Solids 39, 295-307.

Hill, R. (1993). A user-friendly theory of orthotropic plasticity in sheet metals. Int. J. Mech. Sci. 35, 19-25.

Hill, R. and Hutchinson, J. W. (1992). Differential hardening in sheet metal under biaxial loading: a theoretical
framework. J. Appl. Mech. 59, S1-89.

Stout, M. G. and Hecker, S. S. (1983). Role of geometry in plastic instability and fracture of tubes and sheet.
Mech. Mater. 2, 23-31.

Stout, M. G, Hecker, S. S. and Bourcier, R. (1983). An evaluation of anisotropic effective stress—strain criteria
for the biaxial yield and flow of 2024 aluminum tubes. J. Engng Mater. Technol. 105, 242-249.



